
Audio-Enabled Components
by Paul Warren

Have you ever wanted to
include sound in your com-

ponents? Of course we all have at
one time or another. Sound is
becoming an important part of a
polished application.

Delphi provides a TMediaPlayer
component, on the System page,
which will play .WAV files. There is
also the sndPlaySound procedure
from the MMSystem unit. Both these
methods work but have some
drawbacks as well.

First, the sound file has to be
read from disk. This always causes
a perceptible delay to the user.
Then you have to distribute the
.WAV sound files with your applica-
tion and check they exist at run
time (you never know when a user
might delete or move files [Life
would be so much easier without
users! Editor]). Finally you have to
write code for file loading and
playing the sound files.

It would be nice to store the
WaveAudio data right in a compo-
nent. This would eliminate load
time, and the distribution of sound
files, by compiling binary sound
data into the executable.

In fact, couldn’t sound be treated
the same way as graphics? I was
convinced it could. Before my
convictions became reality
though, I came to realize that in
Delphi nothing is impossible.

Catch 22
Using the component expert I
created a TWavePlayer skeleton and
installed it on my Misc component
palette page. I added an FWaveFile
property and immediately realized
I had a problem. There is no editor
for WaveAudio data. Undaunted, I
set out to create one...

In Issue 6 Bob Swart wrote an
excellent article on creating prop-
erty editors and I knew this was
exactly what I needed. I quickly
created a form similar to Dr.Bob’s
ImageForm and called it WaveForm. An
editor interface came next in a unit
called WaveEdit. All I had to do was

substitute a WavePlayer component
for the DrBobImage component
and... Oops, there is no WavePlayer
component! This is why I was
writing an editor in the first place.

Well, this is Delphi after all!
Maybe creating a component to
create an editor to create the
component isn’t too outrageous.

Binary Data
WaveAudio files are simply BLOB
(binary large object) files. They can
be read from disk by the method
TMemoryStream.LoadFromFile. List-
ing 1 shows a code fragment I have
used before to read a WaveAudio
file into memory and call
sndPlaySound.

Bitmap images are essentially
binary data as well, so I started
investigating the storage scheme
Delphi uses for TBitMap types. If you
put a TSpeedButton on a form and
set the Glyph property to display a
16x16 bitmap you can copy it and
paste a second TSpeedButton to the
form. The pasted copy also has a

copy of the Glyph set in the first
TSpeedButton. How is this done?

Obviously the binary image data
is copied along with the TSpeed-
Button. If you use the Windows
clipboard viewer you’ll see Listing
2. This is the same as the data you
see (Figure 1, next page) if you
open the form file as a *.dfm.

TWave Class
I was pretty sure I could do the
same with WaveAudio data. As
usual, after some head scratching
and forehead wrinkling, out came
the VCL source code.

Type TBitMap is a descendant of
TGraphic in the Graphics unit.
TGraphic is a base class implement-
ing a number of methods used by
TBitMap, TMetaFile and TIcon to
read and write image data to disk
files and streams. By assuming
these same methods are likely to
be used by the component library
and form editor I started creating a
TWave class to duplicate the
functionality of TGraphic.

MemoryStream := TMemoryStream.Create;
MemoryStream.LoadFromFile(’S_16_44.WAV’);
sndPlaySound(MemoryStream.Memory, SND_ASYNC OR SND_MEMORY);
...
sndPlaySound(nil, 0);
MemoryStream.Free;

➤ Listing 1

object SpeedButton1: TSpeedButton
 Left = 24
 Top = 16
 Width = 25
 Height = 25
 Glyph.Data = {
 78010000424D7801000000000000760000002800000020000000100000000100
 04000000000000000000120B0000120B00000000000000000000000000000000
 800000800000008080008000000080008000808000007F7F7F00BFBFBF000000
 FF0000FF000000FFFF00FF000000FF00FF00FFFF0000FFFFFF00333333333333
 33333333333FFF3333F333333300033339333333337773F33733333330008033
 933333333737F7F37333333307078733333933337337373F3337333077088803
 33933337F37F337F3373333077088803393333F7337FF37F3733300777008803
 9333377F33773F7F733307088808087333337F7F337F7F7F3FFF070777080873
 99997F7F337F7F7F77770808880808733333737F337F737F3F33300888008803
 93333773F377337F73F333308807880339333337F37F337F373F333088077803
 339333373F73F37333733333087777333339333373F7F7F33F37333330807033
 933333333737F73373F3333333000333393333333377733337330000}
 NumGlyphs = 2
end

➤ Listing 2

May 1996 The Delphi Magazine 41

TWave would have to descend
from TPersistant as TGraphic does.
It would need to read and write
WaveAudio data from disk and
from streams and it would need to
know when it had been modified. A
field to hold the WaveAudio data is
also necessary.

Unlike TGraphic, TWave doesn’t
need to be a base class (unless you
want to store other binary data
types similar to WaveAudio data as
well). Therefore, there are none of
the virtual; abstract; methods
seen in TGraphic. The TWave
LoadFromStream and SaveToStream
methods are much simpler as well
because there is no palette, file
header, etc.

➤ Figure 1:
Binary glyph
data included
in a Delphi
form file

unit Waveplay;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, MMSystem;
type
 TWave = class(TPersistent)
 private
 FModified: Boolean;
 FWaveData: TMemoryStream;
 FOnChange: TNotifyEvent;
 function GetEmpty: Boolean;
 procedure SetModified(Value: Boolean);
 protected
 procedure ReadData(Stream: TStream); virtual;
 procedure WriteData(Stream: TStream); virtual;
 procedure Changed(Sender: TObject);
 procedure DefineProperties(Filer: TFiler); override;
 public
 constructor Create; virtual;
 destructor Destroy;
 procedure Assign(Source: TPersistent); override;
 procedure LoadFromFile(const Filename: string); virtual;
 procedure SaveToFile(const Filename: string); virtual;
 procedure LoadFromStream(Stream: TStream);
 procedure SaveToStream(Stream: TStream);
 property Empty: Boolean read GetEmpty;
 property Modified: Boolean
 read FModified write SetModified;
 property OnChange: TNotifyEvent
 read FOnChange write FOnChange;
 end;
implementation
constructor TWave.Create;
begin
 inherited Create;
 { create WaveAudio data buffer }
 FWaveData := TMemoryStream.Create;
end;
destructor TWave.Destroy;
begin
 FWaveData.Free;
 inherited Destroy;
end;
function TWave.GetEmpty;
{ returns false if buffer is nil }
begin
 Result := FWaveData = nil;
end;
procedure TWave.Assign(Source: TPersistent);
{ method to copy WaveAudio data when required }
begin
 inherited Assign(Source);
end;
procedure TWave.LoadFromStream(Stream: TStream);
{ method to load WaveAudio data from a stream -
 used by the library and by the LoadFromFile method }
begin
 FWaveData.SetSize(Stream.Size);
 Stream.ReadBuffer(FWaveData.Memory^, Stream.Size);
 Changed(Self);
end;

procedure TWave.SaveToStream(Stream: TStream);
{ method to save WaveAudio data to a stream -
 used by the library and by the SaveToFile method }
begin
 Stream.WriteBuffer(FWaveData.Memory^, FWaveData.Size);
end;
procedure TWave.Changed(Sender: TObject);
{ method to indicate data has changed -
 triggers the OnChange method }
begin
 FModified := True;
 if Assigned(FOnChange) then FOnChange(Self);
end;
procedure TWave.DefineProperties(Filer: TFiler);
{ method to allow “fake” data to be read and
 written by the library }
begin
 Filer.DefineBinaryProperty(
 ’Data’, ReadData, WriteData, not Empty);
end;
procedure TWave.SetModified(Value: Boolean);
{ method to set modified flag }
begin
 if Value then
 Changed(Self)
 else
 FModified := False;
end;
procedure TWave.LoadFromFile(const Filename: string);
{ method to read data from *.wav file, calls LoadFromStream }
var Stream: TStream;
begin
 Stream := TFileStream.Create(Filename, fmOpenRead);
 try
 LoadFromStream(Stream);
 finally
 Stream.Free;
 end;
end;
procedure TWave.SaveToFile(const Filename: string);
{ method to write data to *.wav file - calls SaveToStream }
var Stream: TStream;
begin
 Stream := TFileStream.Create(Filename, fmCreate);
 try
 SaveToStream(Stream);
 finally
 Stream.Free;
 end;
end;
procedure TWave.ReadData(Stream: TStream);
{ method for library to read data from stream -
 calls LoadFromStream }
begin
 LoadFromStream(Stream);
end;
procedure TWave.WriteData(Stream: TStream);
{ method for library to write data to stream -
 calls SaveToStream }
begin
 SaveToStream(Stream);
end;

➤ Listing 3

42 The Delphi Magazine Issue 9

The DefineProperties, ReadData
and WriteData methods are the
heart of the TWave class. Delphi’s
Help says ‘The DefineProperties
method designates methods for
storing an object’s unpublished data
on a stream such as a form file’. If
you check out the example you will
see that TComponent.Left and
TComponent.Top are not properties
at all. They are stored using
DefineProperties.

DefineProperties takes a TFiler
as its only parameter. It then calls
the Filer’s DefineBinaryProperties
method. Consulting the Help again
we find ‘The DefineBinaryProperty
method defines binary data the filer
object will store as if the data were
a property’ and ‘the binary property
is written directly to a stream object,
rather than going through a filer
object’.

So it seems TWave is passed a
Filer object by the editor, calls
WriteData which in turn calls
SaveToStream, which takes care of
writing the WaveAudio data to the
calling stream using Stream.
WriteBuffer. The process is
reversed for stream reads. The
code for TWave is shown in Listing 3.

TWavePlayer Component
I had to leave TWave untested while
I created TWavePlayer. Using the
component expert as before I cre-
ated a TWavePlayer skeleton and
gave it an FWave: TWave field, a Wave
property and a SetWave procedure
stub. Listing 4 shows the initial
component skeleton.

TWave Property Editor
I already had my property editor
form and interface unit created,

TWavePlayer = class(TComponent)
private
 FWave: TWave;
 procedure SetWave(AWave: TWave);
protected
public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
published
 property Wave: TWave read FWave write SetWave;
end;
implementation

constructor TWavePlayer.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FWave := TWave.Create; { create class instance }
end;

destructor TWavePlayer.Destroy;
begin
 sndPlaySound(nil, 0); { must make this call or crash and burn }
 FWave.Free; { free class instance }
 inherited Destroy;
end;

procedure TWavePlayer.SetWave(AWave: TWave);
{ method to copy WaveAudio data from property editor, or programmatically }
begin
 { copy data from source }
end;

➤ Listing 4

minus the TWavePlayer component.
To complete the project I needed
to install the TWavePlayer compo-
nent and TWave property editor.
Somewhat to my amazement,
everything compiled first try. Next,
I opened my WaveForm and added a
TWavePlayer component. I got a real
surprise when I tried to save the
form, though. Faster than I could
blink I found myself staring at a
DOS command prompt. This nasty
GPF was caused by a syntax error
in TWave.SaveToStream. After cor-
recting this error the WaveForm
saved fine. Copying the TWavePlayer
to the clipboard confirmed that my
WaveAudio data was streaming
correctly (see Listing 5).

Putting It All Together
I created a new project and put a
TWavePlayer component on the
form. I then tried to set the TWave
property using my new editor.
The first try was a total failure.
Absolutely nothing happened.

The override Edit method for my
property editor shown in Listing 6
invokes the SetWave procedure of
my TWavePlayer. As I would do for a
TBitMap, I had used the Assign
method to copy the WaveAudio
data held in the editor’s TWave
instance to my component’s TWave
instance. The best I could figure is
the inherited Assign method was
inadequate.

procedure TPersistent.Assign(
 Source: TPersistent);
begin
 if Source <> nil then
 Source.AssignTo(Self)
 else
 AssignError(nil);
end;

The code for TPersistent.Assign
was singularly uninformative so I
tried some code similar to
TBitMap.Assign. A little playing
around with the code finally
succeeded in copying the
WaveAudio data from the editor’s
TWavePlayer.Wave source to my new
WavePlayer1.Wave destination. The
final TWave.Assign override and the
TWavePlayer.SetWave methods are
in Listing 7. Of course all the source
code is on this month’s disk.

object WavePlayer1: TWavePlayer
 Enabled = True
 Wave.Data = {
 52494646F405000057415645666D74201000000001000100F82A0000F82A0000
 0100080064617461D005000088486090847094B080404894B888586C88706C9C
 AC78587078686890C094383C9CB4807C90785C608CAC94707C804444A4DC9840
 487C8874789C94604C8090707CA88C444890BC9C545090906080BC985C607884
 ...
 A458609C944C4CA0C0743C78B880487CB0804870A8945868AC903C50B4B45C48
 90A46C5890AC744478AC784C88C07C3864B0A0585CA09C5858A8AC5C54949C60
 5098BC74386CB08C5074AC844468AC985864A098504CA4BC684488B0785484B0
 804870B090547CB4883854ACB0645494A4644C90B06C4888A86C4C88}
 Left = 24
 Top = 20
end

➤ Listing 5

May 1996 The Delphi Magazine 43

What’s Next
It shouldn’t be too hard to add clipboard support to
TWave which would make applications using this class
capable of exchanging audio with other applications.
With clipboard support and the SaveToFile method
your applications could accept clipboard sounds and
write them to disk.

Conclusion
Talk about pulling yourself up by your bootstraps,
creating a component to create an editor to create a
component. Only in Delphi!

TWavePlayer is only the start of what you can do with
the TWave class. Having a streamable WaveAudio class
means your audio is compiled into your executables,
no more having to ship .WAV files with your apps. Gone
is the noticeable delay while audio files load. And
finally, your components can have audio built right in.

On the disk with this issue you will find a TSndBitBtn
that will play a TWave sound in the Click method, and a
TImageSnd that will play sounds in the inherited OnClick
event. There is also a demo of these two components
and a demo of TWavePlayer. Everything works fine with
Delphi 2 as well as Delphi 1, but you will need to convert
the .DCR component bitmap file to 32 bit before install-
ing the component into Delphi 2 [Use Dr.Bob’s
RESCONV.EXE program in the CONSTRUC directory of
this Issue’s disk. Editor].

Paul Warren runs HomeGrown Software Develop-
ment in Langley, British Columbia, Canada and can be
contacted by email at hg_soft@uniserve.com

{ override of the edit method -
 this is the nuts and bolts of the property editor }
procedure TWaveEditor.Edit;
begin
 with TWaveForm.Create(nil) do
 try
 WavePlayer1.Wave := TWave(GetOrdValue);
 if ShowModal = mrOk then
 if (GetPropType^.Name = ’TWave’) then
 SetOrdValue(LongInt(WavePlayer1.Wave));
 finally
 Free;
 end
end;

➤ Listing 6

procedure TWave.Assign(Source: TPersistent);
{ method to copy WaveAudio data when required }
begin
 if (Source = nil) or (Source is TWave) then begin
 if Source <> nil then
 FWaveData := TWave(Source).FWaveData;
 Changed(Self);
 Exit;
 end;
 inherited Assign(Source);
end;

procedure TWavePlayer.SetWave(AWave: TWave);
{ method to copy WaveAudio data from property editor,
 or programmatically }
begin
 FWave.Assign(AWave); { copy data from source }
end;

➤ Listing 7

	Catch 22
	Binary Data
	TWave Class
	TWave Player Component
	TWave Property Editor
	Rutting it All Together
	What's Next
	Conclusion

